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CHAPTER 1

Welcome

Get things from one computer to another, safely.

This package provides a library and a command-line tool named wormhole, which makes it possible to get arbitrary-
sized files and directories (or short pieces of text) from one computer to another. The two endpoints are identified by
using identical “wormhole codes”: in general, the sending machine generates and displays the code, which must then
be typed into the receiving machine.

The codes are short and human-pronounceable, using a phonetically-distinct wordlist. The receiving side offers tab-
completion on the codewords, so usually only a few characters must be typed. Wormhole codes are single-use and do
not need to be memorized.

• PyCon 2016 presentation: Slides, Video

1.1 Example

Sender:

% wormhole send README.md
Sending 7924 byte file named 'README.md'
On the other computer, please run: wormhole receive
Wormhole code is: 7-crossover-clockwork

Sending (<-10.0.1.43:58988)..
100%|=========================| 7.92K/7.92K [00:00<00:00, 6.02MB/s]
File sent.. waiting for confirmation
Confirmation received. Transfer complete.

Receiver:

% wormhole receive
Enter receive wormhole code: 7-crossover-clockwork
Receiving file (7924 bytes) into: README.md
ok? (y/n): y

(continues on next page)
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(continued from previous page)

Receiving (->tcp:10.0.1.43:58986)..
100%|===========================| 7.92K/7.92K [00:00<00:00, 120KB/s]
Received file written to README.md

1.2 Installation

The easiest way to install magic-wormhole is to use a packaged version from your operating system. If there is none,
or you want to participate in development, you can install from source.

1.2.1 MacOS / OS-X

Install Homebrew, then run brew install magic-wormhole.

1.2.2 Linux (Debian/Ubuntu)

Magic-wormhole is available with apt in Debian 9 “stretch”, Ubuntu 17.04 “zesty”, and later versions:

$ sudo apt install magic-wormhole

1.2.3 Linux (Fedora)

Note: magic-wormhole was removed from Fedora starting in Fedora 37. So this command will only work on Fedora
36 and earlier.

$ sudo dnf install magic-wormhole

1.2.4 Linux (openSUSE)

$ sudo zypper install python-magic-wormhole

1.2.5 Linux (Snap package)

Many linux distributions (including Ubuntu) can install “Snap” packages. Magic-wormhole is available through a
third-party package (published by the “snapcrafters” group):

$ sudo snap install wormhole

1.2.6 Windows

Chocolatey

$ choco install magic-wormhole

The binaries for Windows are provided from this project: https://github.com/aquacash5/magic-wormhole-exe

2 Chapter 1. Welcome
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1.2.7 Install from Source

Magic-wormhole is a Python package, and can be installed in the usual ways. The basic idea is to do pip install
magic-wormhole, however to avoid modifying the system’s python libraries, you probably want to put it into a
“user” environment (putting the wormhole executable in ~/.local/bin/wormhole) like this:

pip install --user magic-wormhole

or put it into a virtualenv, like this:

virtualenv venv
source venv/bin/activate
pip install magic-wormhole

You can then run venv/bin/wormhole without first activating the virtualenv, so e.g. you could make a symlink
from ~/bin/wormhole to .../path/to/venv/bin/wormhole, and then plain wormhole send will find
it on your $PATH.

You probably don’t want to use sudo when you run pip. This tends to create conflicts with the system python
libraries.

On OS X, you may need to pre-install pip, and run $ xcode-select --install to get GCC, which is needed
to compile the libsodium cryptography library during the installation process.

On Debian/Ubuntu systems, you may need to install some support libraries first:

$ sudo apt-get install python-pip build-essential python-dev libffi-dev
libssl-dev

On Linux, if you get errors like fatal error: sodium.h: No such file or directory, either use
SODIUM_INSTALL=bundled pip install magic-wormhole, or try installing the libsodium-dev /
libsodium-devel package. These work around a bug in pynacl which gets confused when the libsodium runtime
is installed (e.g. libsodium13) but not the development package.

On Windows, python2 may work better than python3. On older systems, $ pip install --upgrade pip
may be necessary to get a version that can compile all the dependencies. Most of the dependencies are published as
binary wheels, but in case your system is unable to find these, it will have to compile them, for which Microsoft Visual
C++ 9.0 may be required.

1.3 Motivation

• Moving a file to a friend’s machine, when the humans can speak to each other (directly) but the computers
cannot

• Delivering a properly-random password to a new user via the phone

• Supplying an SSH public key for future login use

Copying files onto a USB stick requires physical proximity, and is uncomfortable for transferring long-term secrets
because flash memory is hard to erase. Copying files with ssh/scp is fine, but requires previous arrangements and
an account on the target machine, and how do you bootstrap the account? Copying files through email first requires
transcribing an email address in the opposite direction, and is even worse for secrets, because email is unencrypted.
Copying files through encrypted email requires bootstrapping a GPG key as well as an email address. Copying files
through Dropbox is not secure against the Dropbox server and results in a large URL that must be transcribed. Using
a URL shortener adds an extra step, reveals the full URL to the shortening service, and leaves a short URL that can be
guessed by outsiders.

1.3. Motivation 3
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Many common use cases start with a human-mediated communication channel, such as IRC, IM, email, a phone call,
or a face-to-face conversation. Some of these are basically secret, or are “secret enough” to last until the code is
delivered and used. If this does not feel strong enough, users can turn on additional verification that doesn’t depend
upon the secrecy of the channel.

The notion of a “magic wormhole” comes from the image of two distant wizards speaking the same enchanted phrase
at the same time, and causing a mystical connection to pop into existence between them. The wizards then throw
books into the wormhole and they fall out the other side. Transferring files securely should be that easy.

1.4 Design

The wormhole tool uses PAKE “Password-Authenticated Key Exchange”, a family of cryptographic algorithms that
uses a short low-entropy password to establish a strong high-entropy shared key. This key can then be used to encrypt
data. wormhole uses the SPAKE2 algorithm, due to Abdalla and Pointcheval1.

PAKE effectively trades off interaction against offline attacks. The only way for a network attacker to learn the shared
key is to perform a man-in-the-middle attack during the initial connection attempt, and to correctly guess the code
being used by both sides. Their chance of doing this is inversely proportional to the entropy of the wormhole code.
The default is to use a 16-bit code (use –code-length= to change this), so for each use of the tool, an attacker gets a 1-
in-65536 chance of success. As such, users can expect to see many error messages before the attacker has a reasonable
chance of success.

1.5 Timing

The program does not have any built-in timeouts, however it is expected that both clients will be run within an hour
or so of each other. This makes the tool most useful for people who are having a real-time conversation already, and
want to graduate to a secure connection. Both clients must be left running until the transfer has finished.

1.6 Relays

The wormhole library requires a “Mailbox Server” (also known as the “Rendezvous Server”): a simple WebSocket-
based relay that delivers messages from one client to another. This allows the wormhole codes to omit IP addresses
and port numbers. The URL of a public server is baked into the library for use as a default, and will be freely available
until volume or abuse makes it infeasible to support. Applications which desire more reliability can easily run their
own relay and configure their clients to use it instead. Code for the Mailbox Server is in a separate package named
magic-wormhole-mailbox-server and has documentation here. Both clients must use the same mailbox
server. The default can be overridden with the --relay-url option.

The file-transfer commands also use a “Transit Relay”, which is another simple server that glues together two inbound
TCP connections and transfers data on each to the other (the moral equivalent of a TURN server). The wormhole
send file mode shares the IP addresses of each client with the other (inside the encrypted message), and both clients
first attempt to connect directly. If this fails, they fall back to using the transit relay. As before, the host/port of a
public server is baked into the library, and should be sufficient to handle moderate traffic. Code for the Transit Relay
is provided a separate package named magic-wormhole-transit-relay with instructions here. The clients
exchange transit relay information during connection negotiation, so they can be configured to use different ones
without problems. Use the --transit-helper option to override the default.

The protocol includes provisions to deliver notices and error messages to clients: if either relay must be shut down,
these channels will be used to provide information about alternatives.

4 Chapter 1. Welcome
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1.7 CLI tool

• wormhole send [args] --text TEXT

• wormhole send [args] FILENAME

• wormhole send [args] DIRNAME

• wormhole receive [args]

Both commands accept additional arguments to influence their behavior:

• --code-length WORDS: use more or fewer than 2 words for the code

• --verify : print (and ask user to compare) extra verification string

1.8 Library

The wormhole module makes it possible for other applications to use these code-protected channels. This includes
Twisted support, and (in the future) will include blocking/synchronous support too. See docs/api.md for details.

The file-transfer tools use a second module named wormhole.transit, which provides an encrypted record-
pipe. It knows how to use the Transit Relay as well as direct connections, and attempts them all in parallel.
TransitSender and TransitReceiver are distinct, although once the connection is established, data can flow
in either direction. All data is encrypted (using nacl/libsodium “secretbox”) using a key derived from the PAKE phase.
See src/wormhole/cli/cmd_send.py for examples.

1.9 Development

• Bugs and patches at the GitHub project page.

• Chat via IRC: #magic-wormhole on irc.libera.chat

• Chat via Matrix: #magic-wormhole on matrix.org

To set up Magic Wormhole for development, you will first need to install virtualenv.

Once you’ve done that, git clone the repo, cd into the root of the repository, and run:

virtualenv venv
source venv/bin/activate
pip install --upgrade pip setuptools

Now your virtualenv has been activated. You’ll want to re-run source venv/bin/activate for every new
terminal session you open.

To install Magic Wormhole and its development dependencies into your virtualenv, run:

pip install -e .[dev]

If you are using zsh, such as on macOS Catalina or later, you will have to run pip install -e .'[dev]'
instead.

While the virtualenv is active, running wormhole will get you the development version.

1.7. CLI tool 5
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1.9.1 Running Tests

Within your virtualenv, the command-line program trial will run the test suite:

trial wormhole

This tests the entire wormhole package. If you want to run only the tests for a specific module, or even just a specific
test, you can specify it instead via Python’s standard dotted import notation, e.g.:

trial wormhole.test.test_cli.PregeneratedCode.test_file_tor

Developers can also just clone the source tree and run tox to run the unit tests on all supported (and installed) versions
of python: 2.7, 3.7 and 3.8.

1.9.2 Troubleshooting

Every so often, you might get a traceback with the following kind of error:

pkg_resources.DistributionNotFound: The 'magic-wormhole==0.9.1-268.g66e0d86.dirty'
→˓distribution was not found and is required by the application

If this happens, run pip install -e .[dev] again.

1.9.3 Other

Relevant xkcd :-)

1.10 License, Compatibility

This library is released under the MIT license, see LICENSE for details.

This library is compatible with python2.7, 3.7 and 3.8 .

6 Chapter 1. Welcome
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CHAPTER 2

Tor Support in Magic-Wormhole

The wormhole command-line tool has built-in support for performing transfers over Tor. To use it, you must install
with the “tor” extra, like this:

pip install magic-wormhole[tor]

2.1 Usage

Just add --tor to use a running Tor daemon:

wormhole send --tor myfile.jpg

wormhole receive --tor

You should use --tor rather than running wormhole under tsocks or torsocks because the magic-wormhole “Tran-
sit” protocol normally sends the IP addresses of each computer to its peer, to attempt a direct connection between the
two (somewhat like the FTP protocol would do). External tor-ifying programs don’t know about this, so they can’t
strip these addresses out. Using --tor puts magic-wormhole into a mode where it does not share any IP addresses.

--tor causes the program to look for a Tor control port in the three most common locations:

• unix:/var/run/tor/control: Debian/Ubuntu Tor listen here

• tcp:localhost:9051: the standard Tor control port

• tcp:localhost:9151: control port for TorBrowser’s embedded Tor

If wormhole is unable to establish a control-port connection to any of those locations, it will assume there is a
SOCKS daemon listening on tcp:localhost:9050, and hope for the best (if no SOCKS daemon is available on
that port, the initial Mailbox connection will fail, and the program will exit with an error before doing anything else).

The default behavior will Just Work if:

• you are on a Debian-like system, and the tor package is installed, or:

• you have launched the tor daemon manually, or:

7



Magic-Wormhole Documentation, Release 0+untagged.184.g2fdca51.dirty

• the TorBrowser application is running when you start wormhole

On Debian-like systems, if your account is a member of the debian-tor group, wormhole will use the control-
port to ask for the right SOCKS port. If not, it should fall back to using the default SOCKS port on 9050. To add your
account to the debian-tor group, use e.g. sudo adduser MYUSER debian-tor. Access to the control-port
will be more significant in the future, when wormhole can listen on “onion services”: see below for details.

2.2 Other Ways To Reach Tor

If tor is installed, but you cannot use the control-port or SOCKS-port for some reason, then you can use
--launch-tor to ask wormhole to start a new Tor daemon for the duration of the transfer (and then shut it
down afterwards). This will add 30-40 seconds to program startup.

wormhole send --tor --launch-tor myfile.jpg

Alternatively, if you know of a pre-existing Tor daemon with a non-standard control-port, you can specify that control
port with the --tor-control-port= argument:

wormhole send --tor --tor-control-port=tcp:127.0.0.1:9251 myfile.jpg

2.3 .onion servers

In the future, wormhole with --tor will listen on an ephemeral “onion service” when file transfers are requested.
If both sides are Tor-capable, this will allow transfers to take place “directly” (via the Tor network) from sender to
receiver, bypassing the Transit Relay server. This will require access to a Tor control-port (to ask Tor to create a new
ephemeral onion service). SOCKS-port access will not be sufficient.

However the current version of wormhole does not use onion services. For now, if both sides use --tor, any file
transfers must use the transit relay, since neither side will advertise any listening IP addresses.

8 Chapter 2. Tor Support in Magic-Wormhole



CHAPTER 3

Protocol/API/Library Introduction

The magic-wormhole (Python) distribution provides several things: an executable tool (”bin/wormhole”), an im-
portable library (import wormhole), the URL of a publicly-available Mailbox Server, and the definition of a
protocol used by all three.

The executable tool provides basic sending and receiving of files, directories, and short text strings. These all use
wormhole send and wormhole receive (which can be abbreviated as wormhole tx and wormhole rx).
It also has a mode to facilitate the transfer of SSH keys. This tool, while useful on its own, is just one possible use of
the protocol.

The wormhole library provides an API to establish a bidirectional ordered encrypted record pipe to another instance
(where each record is an arbitrary-sized bytestring). This does not provide file-transfer directly: the “bin/wormhole”
tool speaks a simple protocol through this record pipe to negotiate and perform the file transfer.

wormhole/cli/public_relay.py contains the URLs of a Mailbox Server and a Transit Relay which I provide
to support the file-transfer tools, which other developers should feel free to use for their applications as well. I
cannot make any guarantees about performance or uptime for these servers: if you want to use Magic Wormhole in a
production environment, please consider running a server on your own infrastructure (just run wormhole-server
start and modify the URLs in your application to point at it).

3.1 The Magic-Wormhole Protocol

There are several layers to the protocol.

At the bottom level, each client opens a WebSocket to the Mailbox Server, sending JSON-based commands to the
server, and receiving similarly-encoded messages. Some of these commands are addressed to the server itself, while
others are instructions to queue a message to other clients, or are indications of messages coming from other clients.
All these messages are described in “server-protocol.md”.

These inter-client messages are used to convey the PAKE protocol exchange, then a “VERSION” message (which dou-
bles to verify the session key), then some number of encrypted application-level data messages. “client-protocol.md”
describes these wormhole-to-wormhole messages.

Each wormhole-using application is then free to interpret the data messages as it pleases. The file-transfer app sends
an “offer” from the wormhole send side, to which the wormhole receive side sends a response, after which

9
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the Transit connection is negotiated (if necessary), and finally the data is sent through the Transit connection. “file-
transfer-protocol.md” describes this application’s use of the client messages.

3.2 The wormhole API

Application use the wormhole library to establish wormhole connections and exchange data through them. Please
see api.md for a complete description of this interface.

10 Chapter 3. Protocol/API/Library Introduction



CHAPTER 4

The Magic-Wormhole API

This library provides a mechanism to securely transfer small amounts of data between two computers. Both machines
must be connected to the internet, but they do not need to have public IP addresses or know how to contact each other
ahead of time.

Security and connectivity is provided by means of a “wormhole code”: a short string that is transcribed from one
machine to the other by the users at the keyboard. This works in conjunction with a baked-in “mailbox server” that
relays information from one machine to the other.

The “Wormhole” object provides a secure record pipe between any two programs that use the same wormhole code
(and are configured with the same application ID and mailbox server). Each side can send multiple messages to the
other, but the encrypted data for all messages must pass through (and be temporarily stored on) the mailbox server,
which is a shared resource. For this reason, larger data (including bulk file transfers) should use the Transit class
instead. The Wormhole can be used to create a Transit object for this purpose. In the future, Transit will be deprecated,
and this functionality will be incorporated directly as a “dilated wormhole”.

A quick example:

import wormhole

async def example_initiator(reactor):
w = wormhole.create(appid, relay_url, reactor)
w.allocate_code()

code = await w.get_code()
print(f"code: {code}")

w.send_message(b"outbound data")
inbound = await w.get_message()
await w.close()

11
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4.1 Modes

The API comes in two flavors: Delegated and Deferred. Controlling the Wormhole and sending data is identical in
both, but they differ in how inbound data and events are delivered to the application.

In Delegated mode, the Wormhole is given a “delegate” object, on which certain methods will be called when infor-
mation is available (e.g. when the code is established, or when data messages are received). In Deferred mode, the
Wormhole object has methods which return Deferreds that will fire at these same times.

Delegated mode:

class MyDelegate:
def wormhole_got_code(self, code):

print("code: %s" % code)
def wormhole_got_message(self, msg): # called for each message

print("got data, %d bytes" % len(msg))

w = wormhole.create(appid, relay_url, reactor, delegate=MyDelegate())
w.allocate_code()

Deferred mode:

async def example_initiator(reactor):
appid = "lothar.com/example"
relay_url = public_relay.MAILBOX_RELAY
w = wormhole.create(appid, relay_url, reactor)
w.allocate_code()

code = await w.get_code()
print(f"code: {code}")

msg = await w.get_message() # gets exactly one message
print(f"got msg: {len(msg)} bytes")
result = await w.close()
print(f"closed: {result}")

4.2 Application Identifier

Applications using this library must provide an “application identifier”, a simple string that distinguishes one appli-
cation from another. To ensure uniqueness, use a domain name. To use multiple apps for a single domain, append a
URL-like slash and path, like example.com/app1. This string must be the same on both clients, otherwise they
will not see each other. The invitation codes are scoped to the app-id. Note that the app-id must be unicode, not bytes.

Distinct app-ids reduce the size of the connection-id numbers. If fewer than ten Wormholes are active for a given app-
id, the connection-id will only need to contain a single digit, even if some other app-id is currently using thousands of
concurrent sessions.

4.3 Mailbox Servers

The library depends upon a “mailbox server” which is a service (on a public IP address) that delivers small encrypted
messages from one client to the other. This must be the same for both clients, and is generally baked-in to the
application source code or default config.

12 Chapter 4. The Magic-Wormhole API
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This library includes the URL of a public mailbox server run by the author. Application developers can use this one, or
they can run their own (see the warner/magic-wormhole-mailbox-server repository) and configure their clients to use
it instead. The URL of the public mailbox server is passed as a unicode string. Note that because the server actually
speaks WebSockets, the URL starts with ws: (or wss:) instead of http:.

4.4 Wormhole Parameters

All wormholes must be created with at least three parameters:

• appid: a (unicode) string

• relay_url: a (unicode) string

• reactor: the Twisted reactor object

In addition to these three, the wormhole.create() function takes several optional arguments:

• delegate: provide a Delegate object to enable “delegated mode”, or pass None (the default) to get “deferred
mode”

• journal: provide a Journal object to enable journaled mode. See journal.md for details. Note that journals
only work with delegated mode, not with deferred mode.

• tor_manager: to enable Tor support, create a wormhole.TorManager instance and pass it here. This
will hide the client’s IP address by proxying all connections (mailbox and transit) through Tor. It also enables
connecting to Onion-service transit hints, and (in the future) will enable the creation of Onion-services for transit
purposes.

• timing: this accepts a DebugTiming instance, mostly for internal diagnostic purposes, to record the trans-
mit/receive timestamps for all messages. The wormhole --dump-timing= feature uses this to build a
JSON-format data bundle, and the misc/dump-timing.py tool can build a scrollable timing diagram from
these bundles.

• welcome_handler: this is a function that will be called when the Mailbox Server’s “welcome” message is
received. It is used to display important server messages in an application-specific way.

• versions: this can accept a dictionary (JSON-encodable) of data that will be made available to the peer via
the got_version event. This data is delivered before any data messages, and can be used to indicate peer
capabilities.

4.5 Code Management

Each wormhole connection is defined by a shared secret “wormhole code”. These codes can be created by humans
offline (by picking a unique number and some secret words), but are more commonly generated by asking the library
to make one. In the “bin/wormhole” file-transfer tool, the default behavior is for the sender’s program to create the
code, and for the receiver to type it in.

The code is a (unicode) string in the form NNN-code-words. The numeric “NNN” prefix is the “channel id”
or “nameplate”, and is a short integer allocated by talking to the mailbox server. The rest is a randomly-generated
selection from the PGP wordlist, providing a default of 16 bits of entropy. The initiating program should display this
code to the user, who should transcribe it to the receiving user, who gives it to their local Wormhole object by calling
set_code(). The receiving program can also use input_code() to use a readline-based input function: this
offers tab completion of allocated channel-ids and known codewords.

The Wormhole object has three APIs for generating or accepting a code:

4.4. Wormhole Parameters 13
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• w.allocate_code(length=2): this contacts the Mailbox Server, allocates a short numeric nameplate,
chooses a configurable number of random words, then assembles them into the code

• w.set_code(code): this accepts the complete code as an argument

• helper = w.input_code(): this facilitates interactive entry of the code, with tab-completion. The helper
object has methods to return a list of viable completions for whatever portion of the code has been entered so
far. A convenience wrapper is provided to attach this to the rlcompleter function of libreadline.

No matter which mode is used, the w.get_code() Deferred (or delegate.wormhole_got_code(code)
callback) will fire when the code is known. get_code is clearly necessary for allocate_code, since there’s no
other way to learn what code was created, but it may be useful in other modes for consistency.

The code-entry Helper object has the following API:

• refresh_nameplates(): requests an updated list of nameplates from the Mailbox Server. These
form the first portion of the wormhole code (e.g. “4” in “4-purple-sausages”). Note that they are
unicode strings (so “4”, not 4). The Helper will get the response in the background, and calls to
get_nameplate_completions() after the response will use the new list. Calling this after h.
choose_nameplate will raise AlreadyChoseNameplateError.

• matches = h.get_nameplate_completions(prefix): returns (synchronously) a set of comple-
tions for the given nameplate prefix, along with the hyphen that always follows the nameplate (and separates
the nameplate from the rest of the code). For example, if the server reports nameplates 1, 12, 13, 24, and 170
are in use, get_nameplate_completions("1") will return {"1-", "12-", "13-", "170-"}.
You may want to sort these before displaying them to the user. Raises AlreadyChoseNameplateError if
called after h.choose_nameplate.

• h.choose_nameplate(nameplate): accepts a string with the chosen nameplate. May only be called
once, after which AlreadyChoseNameplateError is raised. (in this future, this might return a Deferred
that fires (with None) when the nameplate’s wordlist is known (which happens after the nameplate is claimed,
requiring a roundtrip to the server)).

• d = h.when_wordlist_is_available(): return a Deferred that fires (with None) when the wordlist
is known. This can be used to block a readline frontend which has just called h.choose_nameplate()
until the resulting wordlist is known, which can improve the tab-completion behavior.

• matches = h.get_word_completions(prefix): return (synchronously) a set of completions
for the given words prefix. This will include a trailing hyphen if more words are expected. The pos-
sible completions depend upon the wordlist in use for the previously-claimed nameplate, so calling this
before choose_nameplate will raise MustChooseNameplateFirstError. Calling this after
h.choose_words() will raise AlreadyChoseWordsError. Given a prefix like “su”, this returns a set
of strings which are potential matches (e.g. {"supportive-", "surrender-", "suspicious-"}.
The prefix should not include the nameplate, but should include whatever words and hyphens have been
typed so far (the default wordlist uses alternate lists, where even numbered words have three syllables,
and odd numbered words have two, so the completions depend upon how many words are present, not
just the partial last word). E.g. get_word_completions("pr") will return {"processor-",
"provincial-", "proximate-"}, while get_word_completions("opulent-pr")
will return {"opulent-preclude", "opulent-prefer", "opulent-preshrunk",
"opulent-printer", "opulent-prowler"} (note the lack of a trailing hyphen, because the
wordlist is expecting a code of length two). If the wordlist is not yet known, this returns an empty set. All return
values will .startswith(prefix). The frontend is responsible for sorting the results before display.

• h.choose_words(words): call this when the user is finished typing in the code. It does not return anything,
but will cause the Wormhole’s w.get_code() (or corresponding delegate) to fire, and triggers the wormhole
connection process. This accepts a string like “purple-sausages”, without the nameplate. It must be called after
h.choose_nameplate() or MustChooseNameplateFirstError will be raised. May only be called
once, after which AlreadyChoseWordsError is raised.
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The input_with_completion wrapper is a function that knows how to use the code-entry helper to do tab
completion of wormhole codes:

from wormhole import create, input_with_completion

async def example(reactor):
w = create(appid, relay_url, reactor)
input_with_completion("Wormhole code:", w.input_code(), reactor)
code = await w.get_code()

This helper runs python’s (raw) input() function inside a thread, since input() normally blocks.

The two machines participating in the wormhole setup are not distinguished: it doesn’t matter which one goes first,
and both use the same Wormhole constructor function. However if w.allocate_code() is used, only one side
should use it.

Providing an invalid nameplate (which is easily caused by cut-and-paste errors that include an extra space at the begin-
ning, or which copy the words but not the number) will raise a KeyFormatError, either in w.set_code(code)
or in h.choose_nameplate().

4.6 Offline Codes

In most situations, the “sending” or “initiating” side will call w.allocate_code() and display the resulting code.
The sending human reads it and speaks, types, performs charades, or otherwise transmits the code to the receiving
human. The receiving human then types it into the receiving computer, where it either calls w.set_code() (if the
code is passed in via argv) or w.input_code() (for interactive entry).

Usually one machine generates the code, and a pair of humans transcribes it to the second machine (so w.
allocate_code() on one side, and w.set_code() or w.input_code() on the other). But it is also possible
for the humans to generate the code offline, perhaps at a face-to-face meeting, and then take the code back to their com-
puters. In this case, w.set_code() will be used on both sides. It is unlikely that the humans will restrict themselves
to a pre-established wordlist when manually generating codes, so the completion feature of w.input_code() is
not helpful.

When the humans create an invitation code out-of-band, they are responsible for choosing an unused channel-ID
(simply picking a random 3-or-more digit number is probably enough), and some random words. Dice, coin flips,
shuffled cards, or repeated sampling of a high-resolution stopwatch are all useful techniques. The invitation code uses
the same format either way: channel-ID, a hyphen, and an arbitrary string. There is no need to encode the sampled
random values (e.g. by using the Diceware wordlist) unless that makes it easier to transcribe: e.g. rolling 6 dice could
result in a code like “913-166532”, and flipping 16 coins could result in “123-HTTHHHTTHTTHHTHH”.

4.7 Welcome Messages

The first message sent by the mailbox server is a “welcome” message (a dictionary). This is sent as soon as the client
connects to the server, generally before the code is established. Clients should use await get_welcome() to get
and process the motd key (and maybe current_cli_version) inside the welcome message.

The welcome message serves three main purposes:

• notify users about important server changes, such as CAPTCHA requirements driven by overload, or donation
requests

• enable future protocol negotiation between clients and the server

• advise users of the CLI tools (wormhole send) to upgrade to a new version

4.6. Offline Codes 15
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There are three keys currently defined for the welcome message, all of which are optional (the welcome message omits
“error” and “motd” unless the server operator needs to signal a problem).

• motd: if this key is present, it will be a string with embedded newlines. The client should display this string to
the user, including a note that it comes from the magic-wormhole Mailbox Server and that server’s URL.

• error: if present, the server has decided it cannot service this client. The string will be wrapped in a
WelcomeError (which is a subclass of WormholeError), and all API calls will signal errors (pending
Deferreds will errback). The mailbox connection will be closed.

• current_cli_version: if present, the server is advising instances of the CLI tools (the wormhole com-
mand included in the python distribution) that there is a newer release available, thus users should upgrade if they
can, because more features will be available if both clients are running the same version. The CLI tools compare
this string against their __version__ and can print a short message to stderr if an upgrade is warranted.

The main idea of error is to allow the server to cleanly inform the client about some necessary action it didn’t take.
The server currently sends the welcome message as soon as the client connects (even before it receives the “claim”
request), but a future server could wait for a required client message and signal an error (via the Welcome message) if
it didn’t see this extra message before the CLAIM arrived.

This could enable changes to the protocol, e.g. requiring a CAPTCHA or proof-of-work token when the server is
under DoS attack. The new server would send the current requirements in an initial message (which old clients would
ignore). New clients would be required to send the token before their “claim” message. If the server sees “claim”
before “token”, it knows that the client is too old to know about this protocol, and it could send a “welcome” with
an error field containing instructions (explaining to the user that the server is under attack, and they must either
upgrade to a client that can speak the new protocol, or wait until the attack has passed). Either case is better than an
opaque exception later when the required message fails to arrive.

(Note that the server can also send an explicit ERROR message at any time, and the client should react with a Server-
Error. Versions 0.9.2 and earlier of the library did not pay attention to the ERROR message, hence the server should
deliver errors in a WELCOME message if at all possible)

The error field is handled internally by the Wormhole object. The other fields can be processed by application,
by using d=w.get_welcome(). The Deferred will fire with the full welcome dictionary, so any other keys that a
future server might send will be available to it.

Applications which need to display motd or an upgrade message, and wish to do so before using stdin/stdout for
interactive code entry (w.input_code()) should wait for get_welcome() before starting the entry process:

async def go():
w = wormhole.create(appid, relay_url, reactor)
welcome = await w.get_welcome()
if "motd" in welcome:

print(welcome["motd"])
input_with_completion("Wormhole code:", w.input_code(), reactor)
...

4.8 Verifier

For extra protection against guessing attacks, Wormhole can provide a “Verifier”. This is a moderate-length series of
bytes (a SHA256 hash) that is derived from the supposedly-shared session key. If desired, both sides can display this
value, and the humans can manually compare them before allowing the rest of the protocol to proceed. If they do not
match, then the two programs are not talking to each other (they may both be talking to a man-in-the-middle attacker),
and the protocol should be abandoned.

Deferred-mode applications can wait for d=w.get_verifier(): the Deferred it returns will fire with the verifier.
You can turn this into hex or Base64 to print it, or render it as ASCII-art, etc.
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Asking the wormhole object for the verifier does not affect the flow of the protocol. To benefit from verification,
applications must refrain from sending any data (with w.send_message(data)) until after the verifiers are ap-
proved by the user. In addition, applications must queue or otherwise ignore incoming (received) messages until that
point. However once the verifiers are confirmed, previously-received messages can be considered valid and processed
as usual.

4.9 Events

As the wormhole connection is established, several events may be dispatched to the application. In Delegated mode,
these are dispatched by calling functions on the delegate object. In Deferred mode, the application retrieves Deferred
objects from the wormhole, and event dispatch is performed by firing those Deferreds.

Most applications will only use code, received, and close.

• code (code = yield w.get_code() / dg.wormhole_got_code(code)): fired when the worm-
hole code is established, either after w.allocate_code() finishes the generation process, or when the
Input Helper returned by w.input_code() has been told h.set_words(), or immediately after w.
set_code(code) is called. This is most useful after calling w.allocate_code(), to show the generated
code to the user so they can transcribe it to their peer.

• key (yield w.get_unverified_key() / dg.wormhole_got_unverified_key(key)): fired
(with the raw master SPAKE2 key) when the key-exchange process has completed and a purported shared
key is established. At this point we do not know that anyone else actually shares this key: the peer may have
used the wrong code, or may have disappeared altogether. To wait for proof that the key is shared, wait for
get_verifier instead. This event is really only useful for detecting that the initiating peer has disconnected
after leaving the initial PAKE message, to display a pacifying message to the user.

• verifier (verifier = yield w.get_verifier() / dg.wormhole_got_verifier(verifier):
fired when the key-exchange process has completed and a valid VERSION message has arrived. The “verifier”
is a byte string with a hash of the shared session key; clients can compare them (probably as hex) to ensure
that they’re really talking to each other, and not to a man-in-the-middle. When get_verifier happens, this
side knows that someone has used the correct wormhole code; if someone used the wrong code, the VERSION
message cannot be decrypted, and the wormhole will be closed instead.

• versions (versions = yield w.get_versions() / dg.wormhole_got_versions(versions):
fired when the VERSION message arrives from the peer. This fires just after verified, but delivers the
“app_versions” data (as passed into wormhole.create(versions=)) instead of the verifier string. This
is mostly a hack to make room for forwards-compatible changes to the CLI file-transfer protocol, which sends
a request in the first message (rather than merely sending the abilities of each side).

• received (yield w.get_message() / dg.wormhole_got_message(msg): fired each time a data
message arrives from the peer, with the bytestring that the peer passed into w.send_message(msg). This
is the primary data-transfer API.

• closed (yield w.close() / dg.wormhole_closed(result): fired when w.close() has finished
shutting down the wormhole, which means all nameplates and mailboxes have been deallocated, and the Web-
Socket connection has been closed. This also fires if an internal error occurs (specifically WrongPasswordEr-
ror, which indicates that an invalid encrypted message was received), which also shuts everything down. The
result value is an exception (or Failure) object if the wormhole closed badly, or a string like “happy” if it had
no problems before shutdown.
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4.10 Sending Data

The main purpose of a Wormhole is to send data. At any point after construction, callers can invoke w.
send_message(msg). This will queue the message if necessary, but (if all goes well) will eventually result in
the peer getting a received event and the data being delivered to the application.

Since Wormhole provides an ordered record pipe, each call to w.send_message will result in exactly one
received event on the far side. Records are not split, merged, dropped, or reordered.

Each side can do an arbitrary number of send_message() calls. The Wormhole is not meant as a long-term com-
munication channel, but some protocols work better if they can exchange an initial pair of messages (perhaps offering
some set of negotiable capabilities), and then follow up with a second pair (to reveal the results of the negotiation). The
Mailbox Server does not currently enforce any particular limits on number of messages, size of messages, or rate of
transmission, but in general clients are expected to send fewer than a dozen messages, of no more than perhaps 20kB in
size (remember that all these messages are temporarily stored in a SQLite database on the server). A future version of
the protocol may make these limits more explicit, and will allow clients to ask for greater capacity when they connect
(probably by passing additional “mailbox attribute” parameters with the allocate/claim/open messages).

For bulk data transfer, see “transit.md”, or the “Dilation” section below.

4.11 Closing

When the application is done with the wormhole, it should call w.close(), and wait for a closed event. This
ensures that all server-side resources are released (allowing the nameplate to be re-used by some other client), and all
network sockets are shut down.

In Deferred mode, this just means waiting for the Deferred returned by w.close() to fire. In Delegated mode, this
means calling w.close() (which doesn’t return anything) and waiting for the delegate’s wormhole_closed()
method to be called.

w.close() will errback (with some form of WormholeError) if anything went wrong with the process, such as:

• WelcomeError: the server told us to signal an error, probably because the client is too old understand some
new protocol feature

• ServerError: the server rejected something we did

• LonelyError: we didn’t hear from the other side, so no key was established

• WrongPasswordError: we received at least one incorrectly-encrypted message. This probably indicates
that the other side used a different wormhole code than we did, perhaps because of a typo, or maybe an attacker
tried to guess your code and failed.

If the wormhole was happy at the time it was closed, the w.close() Deferred will callback (probably with the string
“happy”, but this may change in the future).

4.12 Serialization

(NOTE: this section is speculative: this code has not yet been written)

Wormhole objects can be serialized. This can be useful for apps which save their own state before shutdown, and
restore it when they next start up again.

The w.serialize() method returns a dictionary which can be JSON encoded into a unicode string (most applica-
tions will probably want to UTF-8 -encode this into a bytestring before saving on disk somewhere).
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To restore a Wormhole, call wormhole.from_serialized(data, reactor, delegate). This will re-
turn a wormhole in roughly the same state as was serialized (of course all the network connections will be discon-
nected).

Serialization only works for delegated-mode wormholes (since Deferreds point at functions, which cannot be serialized
easily). It also only works for “non-dilated” wormholes (see below).

To ensure correct behavior, serialization should probably only be done in “journaled mode”. See journal.md for details.

If you use serialization, be careful to never use the same partial wormhole object twice.

4.13 Dilation

(NOTE: this API is still in development)

To send bulk data, or anything more than a handful of messages, a Wormhole can be “dilated” into a form that uses a
direct TCP connection between the two endpoints.

All wormholes start out “undilated”. In this state, all messages are queued on the Mailbox Server for the lifetime of
the wormhole, and server-imposed number/size/rate limits apply. Calling w.dilate() initiates the dilation process,
and eventually yields a set of Endpoints. Once dilated these endpoints can be used to establish multiple (encrypted)
“subchannel” connections to the other side.

Each subchannel behaves like a regular Twisted ITransport, so they can be glued to the Protocol instance of your
choice. They also implement the IConsumer/IProducer interfaces.

These subchannels are durable: as long as the processes on both sides keep running, the subchannel will survive the
network connection being dropped. For example, a file transfer can be started from a laptop, then while it is running,
the laptop can be closed, moved to a new wifi network, opened back up, and the transfer will resume from the new IP
address.

What’s good about a non-dilated wormhole?:

• setup is faster: no delay while it tries to make a direct connection

• works with “journaled mode”, allowing progress to be made even when both sides are never online at the same
time, by serializing the wormhole

What’s good about dilated wormholes?:

• they support bulk data transfer

• you get flow control (backpressure), and IProducer/IConsumer

• throughput is faster: no store-and-forward step

Use non-dilated wormholes when your application only needs to exchange a couple of messages, for example to set
up public keys or provision access tokens. Use a dilated wormhole to move files, stream data, etc

Dilated wormholes can provide multiple “subchannels”: these are multiplexed through the single (encrypted) TCP
connection. Each subchannel is a separate stream (offering IProducer/IConsumer for flow control), and is opened and
closed independently. A special “control channel” is available to both sides so they can coordinate how they use the
subchannels.

The d = w.dilate() Deferred fires with a triple of Endpoints:

d = w.dilate()
def _dilated(res):

(control_channel_ep, subchannel_client_ep, subchannel_server_ep) = res
d.addCallback(_dilated)
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The control_channel_ep endpoint is a client-style endpoint, so both sides will connect to it with ep.
connect(factory). This endpoint is single-use: calling .connect() a second time will fail. The control
channel is symmetric: it doesn’t matter which side is the application-level client/server or initiator/responder, if the
application even has such concepts. The two applications can use the control channel to negotiate who goes first, if
necessary.

The subchannel endpoints are not symmetric: for each subchannel, one side must listen as a server, and the other must
connect as a client. Subchannels can be established by either side at any time. This supports e.g. bidirectional file
transfer, where either user of a GUI app can drop files into the “wormhole” whenever they like.

The subchannel_client_ep on one side is used to connect to the other side’s subchannel_server_ep,
and vice versa. The client endpoint is reusable. The server endpoint is single-use: .listen(factory) may only
be called once.

Applications are under no obligation to use subchannels: for many use cases, the control channel is enough.

To use subchannels, once the wormhole is dilated and the endpoints are available, the listening-side application should
attach a listener to the subchannel_server_ep endpoint:

def _dilated(res):
(control_channel_ep, subchannel_client_ep, subchannel_server_ep) = res
f = Factory(MyListeningProtocol)
subchannel_server_ep.listen(f)

When the connecting-side application wants to connect to that listening protocol, it should use .connect() with a
suitable connecting protocol factory:

def _connect():
f = Factory(MyConnectingProtocol)
subchannel_client_ep.connect(f)

For a bidirectional file-transfer application, both sides will establish a listening protocol. Later, if/when the user drops
a file on the application window, that side will initiate a connection, use the resulting subchannel to transfer the single
file, and then close the subchannel.

def FileSendingProtocol(internet.Protocol):
def __init__(self, metadata, filename):

self.file_metadata = metadata
self.file_name = filename

def connectionMade(self):
self.transport.write(self.file_metadata)
sender = protocols.basic.FileSender()
f = open(self.file_name,"rb")
d = sender.beginFileTransfer(f, self.transport)
d.addBoth(self._done, f)

def _done(res, f):
self.transport.loseConnection()
f.close()

def _send(metadata, filename):
f = protocol.ClientCreator(reactor,

FileSendingProtocol, metadata, filename)
subchannel_client_ep.connect(f)

def FileReceivingProtocol(internet.Protocol):
state = INITIAL
def dataReceived(self, data):

if state == INITIAL:
self.state = DATA
metadata = parse(data)

(continues on next page)
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(continued from previous page)

self.f = open(metadata.filename, "wb")
else:

# local file writes are blocking, so don't bother with IConsumer
self.f.write(data)

def connectionLost(self, reason):
self.f.close()

def _dilated(res):
(control_channel_ep, subchannel_client_ep, subchannel_server_ep) = res
f = Factory(FileReceivingProtocol)
subchannel_server_ep.listen(f)

4.14 Bytes, Strings, Unicode, and Python 3

All cryptographically-sensitive parameters are passed as bytes (”str” in python2, “bytes” in python3):

• verifier string

• data in/out

• transit records in/out

Other (human-facing) values are always unicode (”unicode” in python2, “str” in python3):

• wormhole code

• relay URL

• transit URLs

• transit connection hints (e.g. “host:port”)

• application identifier

• derived-key “purpose” string: w.derive_key(PURPOSE, LENGTH)

4.15 Full API list

action | Deferred-Mode | Delegated-Mode —————— | —————— | ————– . |
d=w.get_welcome() | dg.wormhole_got_welcome(welcome) w.allocate_code() | | h=w.input_code() | |
w.set_code(code) | | . | d=w.get_code() | dg.wormhole_got_code(code) . | d=w.get_unverified_key()
| dg.wormhole_got_unverified_key(key) . | d=w.get_verifier() | dg.wormhole_got_verifier(verifier)
. | d=w.get_versions() | dg.wormhole_got_versions(versions) key=w.derive_key(purpose, length) |
| w.send_message(msg) | | . | d=w.get_message() | dg.wormhole_got_message(msg) w.close() | |
dg.wormhole_closed(result) . | d=w.close() |
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CHAPTER 5

Transit Protocol

The Transit protocol is responsible for establishing an encrypted bidirectional record stream between two programs.
It must be given a “transit key” and a set of “hints” which help locate the other end (which are both delivered by
Wormhole).

The protocol tries hard to create a direct connection between the two ends, but if that fails, it uses a centralized relay
server to ferry data between two separate TCP streams (one to each client). Direct connection hints are used for the
first, and relay hints are used for the second.

The current implementation starts with the following:

• detect all of the host’s IP addresses

• listen on a random TCP port

• offers the (address,port) pairs as hints

The other side will attempt to connect to each of those ports, as well as listening on its own socket. After a few seconds
without success, they will both connect to a relay server.

5.1 Roles

The Transit protocol has pre-defined “Sender” and “Receiver” roles (unlike Wormhole, which is symmetric/nobody-
goes-first). Each connection must have exactly one Sender and exactly one Receiver.

The connection itself is bidirectional: either side can send or receive records. However the connection establishment
mechanism needs to know who is in charge, and the encryption layer needs a way to produce separate keys for each
side..

This may be relaxed in the future, much as Wormhole was.
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5.2 Records

Transit establishes a record-pipe, so the two sides can send and receive whole records, rather than unframed bytes.
This is a side-effect of the encryption (which uses the NaCl “secretbox” function). The encryption adds 44 bytes of
overhead to each record (4-byte length, 24-byte nonce, 32-byte MAC), so you might want to use slightly larger records
for efficiency. The maximum record size is 2^32 bytes (4GiB). The whole record must be held in memory at the same
time, plus its ciphertext, so very large ciphertexts are not recommended.

Transit provides confidentiality, integrity, and ordering of records. Passive attackers can only do the following:

• learn the size and transmission time of each record

• learn the sending and destination IP addresses

In addition, an active attacker is able to:

• delay delivery of individual records, while maintaining ordering (if they delay record #4, they must delay #5
and later as well)

• terminate the connection at any time

If either side receives a corrupted or out-of-order record, they drop the connection. Attackers cannot modify the
contents of a record, or change the order of the records, without being detected and the connection being dropped. If a
record is lost (e.g. the receiver observes records #1,#2,#4, but not #3), the connection is dropped when the unexpected
sequence number is received.

5.3 Handshake

The transit key is used to derive several secondary keys. Two of them are used as a “handshake”, to distinguish correct
Transit connections from other programs that happen to connect to the Transit sockets by mistake or malice.

The handshake is also responsible for choosing exactly one TCP connection to use, even though multiple outbound
and inbound connections are being attempted.

The SENDER-HANDSHAKE is the string transit sender %s ready\n\n, with the %s replaced by a
hex-encoded 32-byte HKDF derivative of the transit key, using a “context string” of transit_sender. The
RECEIVER-HANDSHAKE is the same but with receiver instead of sender (both for the string and the HKDF
context).

The handshake protocol is like this:

• immediately upon connection establishment, the Sender writes SENDER-HANDSHAKE to the socket (regard-
less of whether the Sender initiated the TCP connection, or was listening on a socket and accepted the connec-
tion)

• likewise the Receiver immediately writes RECEIVER-HANDSHAKE to either kind of socket

• if the Sender sees anything other than RECEIVER-HANDSHAKE as the first bytes on the wire, it hangs up

• likewise with the Receiver and SENDER-HANDSHAKE

• if the Sender sees that this is the first connection to get RECEIVER-HANDSHAKE, it sends go\n. If some
other connection got there first, it hangs up (or sends nevermind\n and then hangs up, but this is mostly for
debugging, and implementations should not depend upon it). After sending go, it switches to encrypted-record
mode.

• if the Receiver sees go\n, it switches to encrypted-record mode. If the receiver sees anything else, or a discon-
nected socket, it disconnects.
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To tolerate the inevitable race conditions created by multiple contending sockets, only the Sender gets to decide which
one wins: the first one to make it past negotiation. Hopefully this is correlated with the fastest connection pathway.
The protocol ignores any socket that is not somewhat affiliated with the matching Transit instance.

Hints will frequently point to local IP addresses (local to the other end) which might be in use by unrelated nearby
computers. The handshake helps to ignore these spurious connections. It is still possible for an attacker to cause the
connection to fail, by intercepting both connections (to learn the two handshakes), then making new connections to
play back the recorded handshakes, but this level of attacker could simply drop the user’s packets directly.

Any participant in a Transit connection (i.e. the party on the other end of your wormhole) can cause their peer to
make a TCP connection (and send the handshake string) to any IP address and port of their choosing. The handshake
protocol is intended to make this no more than a minor nuisance.

5.4 Relay

The Transit Relay is a host which offers TURN-like services for magic-wormhole instances. It uses a TCP-based
protocol with a handshake to determine which connection wants to be connected to which.

When connecting to a relay, the Transit client first writes RELAY-HANDSHAKE to the socket, which is
please relay %s\n, where %s is the hex-encoded 32-byte HKDF derivative of the transit key, using
transit_relay_token as the context. The client then waits for ok\n.

The relay waits for a second connection that uses the same token. When this happens, the relay sends ok\n to both,
then wires the connections together, so that everything received after the token on one is written out (after the ok) on
the other. When either connection is lost, the other will be closed (the relay does not support “half-close”).

When clients use a relay connection, they perform the usual sender/receiver handshake just after the ok\n is received:
until that point they pretend the connection doesn’t even exist.

Direct connections are better, since they are faster and less expensive for the relay operator. If there are any potentially-
viable direct connection hints available, the Transit instance will wait a few seconds before attempting to use the relay.
If it has no viable direct hints, it will start using the relay right away. This prefers direct connections, but doesn’t
introduce completely unnecessary stalls.

The Transit client can attempt connections to multiple relays, and uses the first one that passes negotiation. Each side
combines a locally-configured hostname/port (usually “baked in” to the application, and hosted by the application
author) with additional hostname/port pairs that come from the peer. This way either side can suggest the relays
to use. The wormhole application accepts a --transit-helper tcp:myrelay.example.org:12345
command-line option to supply an additional relay. The connection hints provided by the Transit instance include the
locally-configured relay, along with the dynamically-determined direct hints. Both should be delivered to the peer.

5.5 API

The Transit API uses Twisted and returns Deferreds for any call that cannot be handled immediately. The complete
example is here:

from twisted.internet.defer import inlineCallbacks
from wormhole.transit import TransitSender

@inlineCallbacks
def do_transit():

s = TransitSender("tcp:relayhost.example.org:12345")
my_connection_hints = yield s.get_connection_hints()
# (send my hints via wormhole)

(continues on next page)
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(continued from previous page)

# (get their hints via wormhole)
s.add_connection_hints(their_connection_hints)
key = w.derive_key(application_id + "/transit-key")
s.set_transit_key(key)
rp = yield s.connect()
rp.send_record(b"my first record")
their_record = yield rp.receive_record()
rp.send_record(b"Greatest Hits)
other = yield rp.receive_record()
yield rp.close()

First, create a Transit instance, giving it the connection information of the “baked-in” transit relay. The application
must know whether it should use a Sender or a Receiver:

from wormhole.transit import TransitSender
s = TransitSender(baked_in_relay)

Next, ask the Transit for its direct and relay hints. This should be delivered to the other side via a Wormhole message
(i.e. add them to a dict, serialize it with JSON, send the result as a message with wormhole.send()). The
get_connection_hints method returns a Deferred, so in the example we use @inlineCallbacks to yield
the result.

my_connection_hints = yield s.get_connection_hints()

Then, perform the Wormhole exchange, which ought to give you the direct and relay hints of the other side. Tell your
Transit instance about their hints.

s.add_connection_hints(their_connection_hints)

Then use wormhole.derive_key() to obtain a shared key for Transit purposes, and tell your Transit about it.
Both sides must use the same derivation string, and this string must not be used for any other purpose, but beyond that
it doesn’t much matter what the exact derivation string is. The key is secret, of course.

key = w.derive_key(application_id + "/transit-key")
s.set_transit_key(key)

Finally, tell the Transit instance to connect. This returns a Deferred that will yield a “record pipe” object, on which
records can be sent and received. If no connection can be established within a timeout (defaults to 30 seconds),
connect() will signal a Failure instead. The pipe can be closed with close(), which returns a Deferred that fires
when all data has been flushed.

rp = yield s.connect()
rp.send_record(b"my first record")
their_record = yield rp.receive_record()
rp.send_record(b"Greatest Hits)
other = yield rp.receive_record()
yield rp.close()

Records can be sent and received in arbitrary order (you are not limited to taking turns).

The record-pipe object also implements the IConsumer/IProducer protocols for bytes, which means you can
transfer a file by wiring up a file reader as a Producer. Each chunk of bytes that the Producer generates will be put into
a single record. The Consumer interface works the same way. This enables backpressure and flow-control: if the far
end (or the network) cannot keep up with the stream of data, the sender will wait for them to catch up before filling
buffers without bound.
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CHAPTER 6

Mailbox Server Protocol

6.1 Concepts

The Mailbox Server provides queued delivery of binary messages from one client to a second, and vice versa. Each
message contains a “phase” (a string) and a body (bytestring). These messages are queued in a “Mailbox” until the
other side connects and retrieves them, but are delivered immediately if both sides are connected to the server at the
same time.

Mailboxes are identified by a large random string. “Nameplates”, in contrast, have short numeric identities: in a
wormhole code like “4-purple-sausages”, the “4” is the nameplate.

Each client has a randomly-generated “side”, a short hex string, used to differentiate between echoes of a client’s own
message, and real messages from the other client.

6.2 Application IDs

The server isolates each application from the others. Each client provides an “App Id” when it first connects (via
the “BIND” message), and all subsequent commands are scoped to this application. This means that nameplates
(described below) and mailboxes can be re-used between different apps. The AppID is a unicode string. Both sides of
the wormhole must use the same AppID, of course, or they’ll never see each other. The server keeps track of which
applications are in use for maintenance purposes.

Each application should use a unique AppID. Developers are encouraged to use “DNSNAME/APPNAME” to obtain a
unique one: e.g. the bin/wormhole file-transfer tool uses lothar.com/wormhole/text-or-file-xfer.

6.3 WebSocket Transport

At the lowest level, each client establishes (and maintains) a WebSocket connection to the Mailbox Server. If the
connection is lost (which could happen because the server was rebooted for maintenance, or because the client’s
network connection migrated from one network to another, or because the resident network gremlins decided to mess
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with you today), clients should reconnect after waiting a random (and exponentially-growing) delay. The Python
implementation waits about 1 second after the first connection loss, growing by 50% each time, capped at 1 minute.

Each message to the server is a dictionary, with at least a type key, and other keys that depend upon the particular
message type. Messages from server to client follow the same format.

misc/dump-timing.py is a debug tool which renders timing data gathered from the server and both clients,
to identify protocol slowdowns and guide optimization efforts. To support this, the client/server messages include
additional keys. Client->Server messages include a random id key, which is copied into the ack that is immediately
sent back to the client for all commands (logged for the timing tool but otherwise ignored). Some client->server
messages (list, allocate, claim, release, close, ping) provoke a direct response by the server: for these,
id is copied into the response. This helps the tool correlate the command and response. All server->client messages
have a server_tx timestamp (seconds since epoch, as a float), which records when the message left the server.
Direct responses include a server_rx timestamp, to record when the client’s command was received. The tool
combines these with local timestamps (recorded by the client and not shared with the server) to build a full picture of
network delays and round-trip times.

All messages are serialized as JSON, encoded to UTF-8, and the resulting bytes sent as a single “binary-mode”
WebSocket payload.

Servers can signal error for any message type it does not recognize. Clients and Servers must ignore unrecognized
keys in otherwise-recognized messages. Clients must ignore unrecognized message types from the Server.

6.4 Connection-Specific (Client-to-Server) Messages

The first thing each client sends to the server, immediately after the WebSocket connection is established, is a bind
message. This specifies the AppID and side (in keys appid and side, respectively) that all subsequent messages
will be scoped to. While technically each message could be independent (with its own appid and side), I thought
it would be less confusing to use exactly one WebSocket per logical wormhole connection.

The first thing the server sends to each client is the welcome message. This is intended to deliver important status
information to the client that might influence its operation. The Python client currently reacts to the following keys
(and ignores all others):

• current_cli_version: prompts the user to upgrade if the server’s advertised version is greater than the
client’s version (as derived from the git tag)

• motd: prints this message, if present; intended to inform users about performance problems, scheduled down-
time, or to beg for donations to keep the server running

• error: causes the client to print the message and then terminate. If a future version of the protocol requires
a rate-limiting CAPTCHA ticket or other authorization record, the server can send error (explaining the
requirement) if it does not see this ticket arrive before the bind.

A ping will provoke a pong: these are only used by unit tests for synchronization purposes (to detect when a batch
of messages have been fully processed by the server). NAT-binding refresh messages are handled by the WebSocket
layer (by asking Autobahn to send a keepalive messages every 60 seconds), and do not use ping.

If any client->server command is invalid (e.g. it lacks a necessary key, or was sent in the wrong order), an error
response will be sent, This response will include the error string in the error key, and a full copy of the original
message dictionary in orig.

6.5 Nameplates

Wormhole codes look like 4-purple-sausages, consisting of a number followed by some random words. This
number is called a “Nameplate”.
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On the Mailbox Server, the Nameplate contains a pointer to a Mailbox. Clients can “claim” a nameplate, and then later
“release” it. Each claim is for a specific side (so one client claiming the same nameplate multiple times only counts as
one claim). Nameplates are deleted once the last client has released it, or after some period of inactivity.

Clients can either make up nameplates themselves, or (more commonly) ask the server to allocate one for them.
Allocating a nameplate automatically claims it (to avoid a race condition), but for simplicity, clients send a claim for
all nameplates, even ones which they’ve allocated themselves.

Nameplates (on the server) must live until the second client has learned about the associated mailbox, after which
point they can be reused by other clients. So if two clients connect quickly, but then maintain a long-lived wormhole
connection, they do not need to consume the limited space of short nameplates for that whole time.

The allocate command allocates a nameplate (the server returns one that is as short as possible), and the
allocated response provides the answer. Clients can also send a list command to get back a nameplates
response with all allocated nameplates for the bound AppID: this helps the code-input tab-completion feature know
which prefixes to offer. The nameplates response returns a list of dictionaries, one per claimed nameplate, with
at least an id key in each one (with the nameplate string). Future versions may record additional attributes in the
nameplate records, specifically a wordlist identifier and a code length (again to help with code-completion on the
receiver).

6.6 Mailboxes

The server provides a single “Mailbox” to each pair of connecting Wormhole clients. This holds an unordered set of
messages, delivered immediately to connected clients, and queued for delivery to clients which connect later. Messages
from both clients are merged together: clients use the included side identifier to distinguish echoes of their own
messages from those coming from the other client.

Each mailbox is “opened” by some number of clients at a time, until all clients have closed it. Mailboxes are kept alive
by either an open client, or a Nameplate which points to the mailbox (so when a Nameplate is deleted from inactivity,
the corresponding Mailbox will be too).

The open command both marks the mailbox as being opened by the bound side, and also adds the WebSocket as
subscribed to that mailbox, so new messages are delivered immediately to the connected client. There is no explicit
ack to the open command, but since all clients add a message to the mailbox as soon as they connect, there will always
be a message response shortly after the open goes through. The close command provokes a closed response.

The close command accepts an optional “mood” string: this allows clients to tell the server (in general terms) about
their experiences with the wormhole interaction. The server records the mood in its “usage” record, so the server
operator can get a sense of how many connections are succeeding and failing. The moods currently recognized by the
Mailbox Server are:

• happy (default): the PAKE key-establishment worked, and the client saw at least one valid encrypted message
from its peer

• lonely: the client gave up without hearing anything from its peer

• scary: the client saw an invalid encrypted message from its peer, indicating that either the wormhole code was
typed in wrong, or an attacker tried (and failed) to guess the code

• errory: the client encountered some other error: protocol problem or internal error

The server will also record pruney if it deleted the mailbox due to inactivity, or crowded if more than two sides
tried to access the mailbox.

When clients use the add command to add a client-to-client message, they will put the body (a bytestring) into the
command as a hex-encoded string in the body key. They will also put the message’s “phase”, as a string, into the
phase key. See client-protocol.md for details about how different phases are used.
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When a client sends open, it will get back a message response for every message in the mailbox. It will also get a
real-time message for every add performed by clients later. These message responses include “side” and “phase”
from the sending client, and “body” (as a hex string, encoding the binary message body). The decoded “body” will
either by a random-looking cryptographic value (for the PAKE message), or a random-looking encrypted blob (for
the VERSION message, as well as all application-provided payloads). The message response will also include id,
copied from the id of the add message (and used only by the timing-diagram tool).

The Mailbox Server does not de-duplicate messages, nor does it retain ordering: clients must do both if they need to.

6.7 All Message Types

This lists all message types, along with the type-specific keys for each (if any), and which ones provoke direct re-
sponses:

• S->C welcome {welcome:}

• (C->S) bind {appid:, side:}

• (C->S) list {} -> nameplates

• S->C nameplates {nameplates: [{id: str},..]}

• (C->S) allocate {} -> allocated

• S->C allocated {nameplate:}

• (C->S) claim {nameplate:} -> claimed

• S->C claimed {mailbox:}

• (C->S) release {nameplate:?} -> released

• S->C released

• (C->S) open {mailbox:}

• (C->S) add {phase: str, body: hex} -> message (to all connected clients)

• S->C message {side:, phase:, body:, id:}

• (C->S) close {mailbox:?, mood:?} -> closed

• S->C closed

• S->C ack

• (C->S) ping {ping: int} -> ping

• S->C pong {pong: int}

• S->C error {error: str, orig:}

6.8 Persistence

The server stores all messages in a database, so it should not lose any information when it is restarted. The server will
not send a direct response until any side-effects (such as the message being added to the mailbox) have been safely
committed to the database.

The client library knows how to resume the protocol after a reconnection event, assuming the client process itself
continues to run.
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Clients which terminate entirely between messages (e.g. a secure chat application, which requires multiple wormhole
messages to exchange address-book entries, and which must function even if the two apps are never both running at
the same time) can use “Journal Mode” to ensure forward progress is made: see “journal.md” for details.

6.8. Persistence 31



Magic-Wormhole Documentation, Release 0+untagged.184.g2fdca51.dirty

32 Chapter 6. Mailbox Server Protocol



CHAPTER 7

Client-to-Client Protocol

Wormhole clients do not talk directly to each other (at least at first): they only connect directly to the Mailbox Server.
They ask this server to convey messages to the other client (via the add command and the message response). This
document explains the format of these client-to-client messages.

Each such message contains a “phase” string, and a hex-encoded binary “body”.

Any phase which is purely numeric (^\d+$) is reserved for encrypted application data. The Mailbox server may de-
liver these messages multiple times, or out-of-order, but the wormhole client will deliver the corresponding decrypted
data to the application in strict numeric order. All other (non-numeric) phases are reserved for the Wormhole client
itself. Clients will ignore any phase they do not recognize.

Immediately upon opening the mailbox, clients send the pake phase, which contains the binary SPAKE2 message
(the one computed as X+M*pw or Y+N*pw).

Upon receiving their peer’s pake phase, clients compute and remember the shared key. They derive the “verifier” (a
hash of the shared key) and deliver it to the application by calling got_verifier: applications can display this to
users who want additional assurance (by manually comparing the values from both sides: they ought to be identical).
At this point clients also send the encrypted version phase, whose plaintext payload is a UTF-8-encoded JSON-
encoded dictionary of metadata. This allows the two Wormhole instances to signal their ability to do other things (like
“dilate” the wormhole). The version data will also include an app_versions key which contains a dictionary of
metadata provided by the application, allowing apps to perform similar negotiation.

At this stage, the client knows the supposed shared key, but has not yet seen evidence that the peer knows it too. When
the first peer message arrives (i.e. the first message with a .side that does not equal our own), it will be decrypted: we
use authenticated encryption (nacl.SecretBox), so if this decryption succeeds, then we’re confident that somebody
used the same wormhole code as us. This event pushes the client mood from “lonely” to “happy”.

This might be triggered by the peer’s version message, but if we had to re-establish the Mailbox Server connection,
we might get peer messages out of order and see some application-level message first.

When a version message is successfully decrypted, the application is signaled with got_version. When any
application message is successfully decrypted, received is signaled. Application messages are delivered strictly
in-order: if we see phases 3 then 2 then 1, all three will be delivered in sequence after phase 1 is received.

If any message cannot be successfully decrypted, the mood is set to “scary”, and the wormhole is closed. All pend-
ing Deferreds will be errbacked with a WrongPasswordError (a subclass of WormholeError), the name-
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plate/mailbox will be released, and the WebSocket connection will be dropped. If the application calls close(),
the resulting Deferred will not fire until deallocation has finished and the WebSocket is closed, and then it will fire
with an errback.

Both version and all numeric (app-specific) phases are encrypted. The message body will be the hex-encoded
output of a NaCl SecretBox, keyed by a phase+side -specific key (computed with HKDF-SHA256, using the shared
PAKE key as the secret input, and wormhole:phase:%s%s % (SHA256(side), SHA256(phase)) as the
CTXinfo), with a random nonce.
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CHAPTER 8

File-Transfer Protocol

The bin/wormhole tool uses a Wormhole to establish a connection, then speaks a file-transfer -specific protocol
over that Wormhole to decide how to transfer the data. This application-layer protocol is described here.

All application-level messages are dictionaries, which are JSON-encoded and and UTF-8 encoded before being handed
to wormhole.send (which then encrypts them before sending through the mailbox server to the peer).

8.1 Sender

wormhole send has two main modes: file/directory (which requires a non-wormhole Transit connection), or text
(which does not).

If the sender is doing files or directories, its first message contains just a transit key, whose value is a dictionary
with abilities-v1 and hints-v1 keys. These are given to the Transit object, described below.

Then (for both files/directories and text) it sends a message with an offer key. The offer contains a single key,
exactly one of (message, file, or directory). For message, the value is the message being sent. For file
and directory, it contains a dictionary with additional information:

• message: the text message, for text-mode

• file: for file-mode, a dict with filename and filesize

• directory: for directory-mode, a dict with:

• mode: the compression mode, currently always zipfile/deflated

• dirname

• zipsize: integer, size of the transmitted data in bytes

• numbytes: integer, estimated total size of the uncompressed directory

• numfiles: integer, number of files+directories being sent

The sender runs a loop where it waits for similar dictionary-shaped messages from the recipient, and processes them.
It reacts to the following keys:
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• error: use the value to throw a TransferError and terminates

• transit: use the value to build the Transit instance

• answer:

• if message_ack: ok is in the value (we’re in text-mode), then exit with success

• if file_ack: ok in the value (and we’re in file/directory mode), then wait for Transit to connect, then send
the file through Transit, then wait for an ack (via Transit), then exit

The sender can handle all of these keys in the same message, or spaced out over multiple ones. It will ignore any keys
it doesn’t recognize, and will completely ignore messages that don’t contain any recognized key. The only constraint is
that the message containing message_ack or file_ack is the last one: it will stop looking for wormhole messages
at that point.

8.2 Recipient

wormhole receive is used for both file/directory-mode and text-mode: it learns which is being used from the
offer message.

The recipient enters a loop where it processes the following keys from each received message:

• error: if present in any message, the recipient raises TransferError (with the value) and exits immediately
(before processing any other keys)

• transit: the value is used to build the Transit instance

• offer: parse the offer:

• message: accept the message and terminate

• file: connect a Transit instance, wait for it to deliver the indicated number of bytes, then write them to the
target filename

• directory: as with file, but unzip the bytes into the target directory

8.3 Transit

The Wormhole API does not currently provide for large-volume data transfer (this feature will be added to a future
version, under the name “Dilated Wormhole”). For now, bulk data is sent through a “Transit” object, which does not
use the Mailbox Server. Instead, it tries to establish a direct TCP connection from sender to recipient (or vice versa). If
that fails, both sides connect to a “Transit Relay”, a very simple Server that just glues two TCP sockets together when
asked.

The Transit object is created with a key (the same key on each side), and all data sent through it will be encrypted with
a derivation of that key. The transit key is also used to derive handshake messages which are used to make sure we’re
talking to the right peer, and to help the Transit Relay match up the two client connections. Unlike Wormhole objects
(which are symmetric), Transit objects come in pairs: one side is the Sender, and the other is the Receiver.

Like Wormhole, Transit provides an encrypted record pipe. If you call .send() with 40 bytes, the other end will
see a .gotData() with exactly 40 bytes: no splitting, merging, dropping, or re-ordering. The Transit object also
functions as a twisted Producer/Consumer, so it can be connected directly to file-readers and writers, and does flow-
control properly.

Most of the complexity of the Transit object has to do with negotiating and scheduling likely targets for the TCP
connection.
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Each Transit object has a set of “abilities”. These are outbound connection mechanisms that the client is capable of
using. The basic CLI tool (running on a normal computer) has two abilities: direct-tcp-v1 and relay-v1.

• direct-tcp-v1 indicates that it can make outbound TCP connections to a requested host and port num-
ber. “v1” means that the first thing sent over these connections is a specific derived handshake message, e.g.
transit sender HEXHEX ready\n\n.

• relay-v1 indicates it can connect to the Transit Relay and speak the matching protocol (in which the first
message is please relay HEXHEX for side HEX\n, and the relay might eventually say ok\n).

Future implementations may have additional abilities, such as connecting directly to Tor onion services, I2P services,
WebSockets, WebRTC, or other connection technologies. Implementations on some platforms (such as web browsers)
may lack direct-tcp-v1 or relay-v1.

While it isn’t strictly necessary for both sides to emit what they’re capable of using, it does help performance: a Tor
Onion-service -capable receiver shouldn’t spend the time and energy to set up an onion service if the sender can’t use
it.

After learning the abilities of its peer, the Transit object can create a list of “hints”, which are endpoints that the peer
should try to connect to. Each hint will fall under one of the abilities that the peer indicated it could use. Hints have
types like direct-tcp-v1, tor-tcp-v1, and relay-v1. Hints are encoded into dictionaries (with a mandatory
type key, and other keys as necessary):

• direct-tcp-v1 {hostname:, port:, priority:?}

• tor-tcp-v1 {hostname:, port:, priority:?}

• relay-v1 {hints: [{hostname:, port:, priority:?}, ..]}

For example, if our peer can use direct-tcp-v1, then our Transit object will deduce our local IP addresses (unless
forbidden, i.e. we’re using Tor), listen on a TCP port, then send a list of direct-tcp-v1 hints pointing at all of
them. If our peer can use relay-v1, then we’ll connect to our relay server and give the peer a hint to the same.

tor-tcp-v1 hints indicate an Onion service, which cannot be reached without Tor. direct-tcp-v1 hints can
be reached with direct TCP connections (unless forbidden) or by proxying through Tor. Onion services take about 30
seconds to spin up, but bypass NAT, allowing two clients behind NAT boxes to connect without a transit relay (really,
the entire Tor network is acting as a relay).

The file-transfer application uses transit messages to convey these abilities and hints from one Transit object to
the other. After updating the Transit objects, it then asks the Transit object to connect, whereupon Transit will try to
connect to all the hints that it can, and will use the first one that succeeds.

The file-transfer application, when actually sending file/directory data, will close the Wormhole as soon as it has
enough information to begin opening the Transit connection. The final ack of the received data is sent through the
Transit object, as a UTF-8-encoded JSON-encoded dictionary with ack: ok and sha256: HEXHEX containing
the hash of the received data.

8.4 Future Extensions

Transit will be extended to provide other connection techniques:

• WebSocket: usable by web browsers, not too hard to use by normal computers, requires direct (or relayed) TCP
connection

• WebRTC: usable by web browsers, hard-but-technically-possible to use by normal computers, provides NAT
hole-punching for “free”

• (web browsers cannot make direct TCP connections, so interop between browsers and CLI clients will either
require adding WebSocket to CLI, or a relay that is capable of speaking/bridging both)
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• I2P: like Tor, but not capable of proxying to normal TCP hints.

• ICE-mediated STUN/STUNT: NAT hole-punching, assisted somewhat by a server that can tell you your external
IP address and port. Maybe implemented as a uTP stream (which is UDP based, and thus easier to get through
NAT).

The file-transfer protocol will be extended too:

• “command mode”: establish the connection, then figure out what we want to use it for, allowing multiple files
to be exchanged, in either direction. This is to support a GUI that lets you open the wormhole, then drop files
into it on either end.

• some Transit messages being sent early, so ports and Onion services can be spun up earlier, to reduce overall
waiting time

• transit messages being sent in multiple phases: maybe the transit connection can progress while waiting for the
user to confirm the transfer

The hope is that by sending everything in dictionaries and multiple messages, there will be enough wiggle room to
make these extensions in a backwards-compatible way. For example, to add “command mode” while allowing the
fancy new (as yet unwritten) GUI client to interoperate with old-fashioned one-file-only CLI clients, we need the GUI
tool to send an “I’m capable of command mode” in the VERSION message, and look for it in the received VERSION.
If it isn’t present, it will either expect to see an offer (if the other side is sending), or nothing (if it is waiting to receive),
and can explain the situation to the user accordingly. It might show a locked set of bars over the wormhole graphic to
mean “cannot send”, or a “waiting to send them a file” overlay for send-only.
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CHAPTER 9

Known Vulnerabilities

9.1 Low-probability Man-In-The-Middle Attacks

By default, wormhole codes contain 16 bits of entropy. If an attacker can intercept your network connection (either
by owning your network, or owning the mailbox server), they can attempt an attack. They will have a one-in-65536
chance of successfully guessing your code, allowing them to pose as your intended partner. If they succeed, they can
turn around and immediately start a new wormhole (using the same code), allowing your partner to connect to them
instead of you. By passing, observing, and possibly modifying messages between these two connections, they could
perform an MitM (Man In The Middle) attack.

If the server refused to re-use the same channel id (aka “nameplate”) right away (issue #31), a network attacker would
be unable to set up the second connection, cutting this attack in half. An attacker who controls the server would not be
affected.

Basic probability tells us that peers will see a large number of WrongPasswordErrors before the attacker has a useful
chance of successfully guessing any wormhole code. You should expect to see about 32000 failures before they have
a 50% chance of being successful. If you see many failures, and think someone is trying to guess your codes, you can
use e.g. wormhole send --code-length=4 to make a longer code (reducing their chances significantly).

Of course, an attacker who learns your secret wormhole code directly (because you delivered it over an insecure
channel) can perform this attack with 100% reliability.

9.2 DoS Attack on the Mailbox Server

Wormhole codes can be so short because they implicitly contain a common mailbox server URL (any two applications
that use magic-wormhole should be configured to use the same server). As a result, successful operation depends upon
both clients being able to contact that server, making it a SPOF (single point of failure).

In particular, grumpy people could disrupt service for everyone by writing a program that just keeps connecting to the
mailbox server, pretending to be real clients, and claiming messages meant for legitimate users.

I do not have any good mitigations for this attack, and functionality may depend upon the continued goodwill of
potential vandals. The weak ones that I’ve considered (but haven’t implemented yet) include:
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• hashcash challenges when the server is under attack

• per-IP rate-limiting (although I’d want to be careful about protecting the privacy of the IP addresses, so it’d need
a rotating hash seed)

• require users to go through some external service (maybe ReCAPTCHA?) and get a rate-limiting ticket before
claiming a channel

• shipping an attack tool (flooding the first million channels), as part of the distribution, in a subcommand named
wormhole break-this-useful-service-for-everybody-because-i-am-a-horrible-person,
in the hopes that pointing out how easy it is might dissuade a few would-be vandals from feeling a sense of
accomplishment at writing their own :). Not sure it would help much, but I vaguely remember hearing about
something similar in the early multi-user unix systems (a publicly-executable /bin/crash or something, which
new users tended to only run once before learning some responsibility).

Using the secret words as part of the “channel id” isn’t safe, since it would allow a network attacker, or the mailbox
server, to deduce what the secret words are: since they only have 16 bits of entropy, the attacker just makes a table of
hash(words) -> channel-id, then reverses it. To make that safer we’d need to increase the codes to maybe 80 bits (ten
words), plus do some significant key-stretching (like 5-10 seconds of scrypt or argon2), which would increase latency
and CPU demands, and still be less secure overall.

The core problem is that, because things are so easy for the legitimate participants, they’re really easy for the attacker
too. Short wormhole codes are the easiest to use, but they make it for a trivially predictable channel-id target.

I don’t have a good answer for this one. I’m hoping that it isn’t sufficiently interesting to attack that it’ll be an issue, but
I can’t think of any simple answers. If the API is sufficiently compelling for other applications to incorporate Worm-
hole “technology” into their apps, I’m expecting that they’ll run their own mailbox server, and of course those apps
can incorporate whatever sort of DoS protection seems appropriate. For the built-in/upstream send-text/file/directory
tools, using the public relay that I run, it may just have to be a best-effort service, and if someone decides to kill it, it
fails.

See #107 for more discussion.

40 Chapter 9. Known Vulnerabilities



CHAPTER 10

Journaled Mode

(note: this section is speculative, the code has not yet been written)

Magic-Wormhole supports applications which are written in a “journaled” or “checkpointed” style. These apps store
their entire state in a well-defined checkpoint (perhaps in a database), and react to inbound events or messages by
carefully moving from one state to another, then releasing any outbound messages. As a result, they can be terminated
safely at any moment, without warning, and ensure that the externally-visible behavior is deterministic and independent
of this stop/restart timing.

This is the style encouraged by the E event loop, the original Waterken Server, and the more modern Ken Platform, all
influential in the object-capability security community.

10.1 Requirements

Applications written in this style must follow some strict rules:

• all state goes into the checkpoint

• the only way to affect the state is by processing an input message

• event processing is deterministic (any non-determinism must be implemented as a message, e.g. from a clock
service or a random-number generator)

• apps must never forget a message for which they’ve accepted responsibility

The main processing function takes the previous state checkpoint and a single input message, and produces a new state
checkpoint and a set of output messages. For performance, the state might be kept in memory between events, but the
behavior should be indistinguishable from that of a server which terminates completely between events.

In general, applications must tolerate duplicate inbound messages, and should re-send outbound messages until the
recipient acknowledges them. Any outbound responses to an inbound message must be queued until the checkpoint is
recorded. If outbound messages were delivered before the checkpointing, then a crash just after delivery would roll the
process back to a state where it forgot about the inbound event, causing observably inconsistent behavior that depends
upon whether the outbound message successfully escaped the dying process or not.
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As a result, journaled-style applications use a very specific process when interacting with the outside world. Their
event-processing function looks like:

• receive inbound event

• (load state)

• create queue for any outbound messages

• process message (changing state and queuing outbound messages)

• serialize state, record in checkpoint

• deliver any queued outbound messages

In addition, the protocols used to exchange messages should include message IDs and acks. Part of the state vector
will include a set of unacknowledged outbound messages. When a connection is established, all outbound messages
should be re-sent, and messages are removed from the pending set when an inbound ack is received. The state must
include a set of inbound message ids which have been processed already. All inbound messages receive an ack, but
only new ones are processed. Connection establishment/loss is not strictly included in the journaled-app model (in
Waterken/Ken, message delivery is provided by the platform, and apps do not know about connections), but general:

• “I want to have a connection” is stored in the state vector

• “I am connected” is not

• when a connection is established, code can run to deliver pending messages, and this does not qualify as an
inbound event

• inbound events can only happen when at least one connection is established

• immediately after restarting from a checkpoint, no connections are established, but the app might initiate out-
bound connections, or prepare to accept inbound ones

10.2 Wormhole Support

To support this mode, the Wormhole constructor accepts a journal= argument. If provided, it must be an object that
implements the wormhole.IJournal interface, which consists of two methods:

• j.queue_outbound(fn, *args, **kwargs): used to delay delivery of outbound messages until the
checkpoint has been recorded

• j.process(): a context manager which should be entered before processing inbound messages

wormhole.Journal is an implementation of this interface, which is constructed with a (synchronous)
save_checkpoint function. Applications can use it, or bring their own.

The Wormhole object, when configured with a journal, will wrap all inbound WebSocket message processing with the
j.process() context manager, and will deliver all outbound messages through j.queue_outbound. Applica-
tions using such a Wormhole must also use the same journal for their own (non-wormhole) events. It is important to
coordinate multiple sources of events: e.g. a UI event may cause the application to call w.send(data), and the
outbound wormhole message should be checkpointed along with the app’s state changes caused by the UI event. Using
a shared journal for both wormhole- and non-wormhole- events provides this coordination.

The save_checkpoint function should serialize application state along with any Wormholes that are active.
Wormhole state can be obtained by calling w.serialize(), which will return a dictionary (that can be JSON-
serialized). At application startup (or checkpoint resumption), Wormholes can be regenerated with wormhole.
from_serialized(). Note that only “delegated-mode” wormholes can be serialized: Deferreds are not amenable
to usage beyond a single process lifetime.
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For a functioning example of a journaled-mode application, see misc/demo-journal.py. The following snippet may
help illustrate the concepts:

class App:
@classmethod
def new(klass):

self = klass()
self.state = {}
self.j = wormhole.Journal(self.save_checkpoint)
self.w = wormhole.create(.., delegate=self, journal=self.j)

@classmethod
def from_serialized(klass):

self = klass()
self.j = wormhole.Journal(self.save_checkpoint)
with open("state.json", "r") as f:

data = json.load(f)
self.state = data["state"]
self.w = wormhole.from_serialized(data["wormhole"], reactor,

delegate=self, journal=self.j)

def inbound_event(self, event):
# non-wormhole events must be performed in the journal context
with self.j.process():

parse_event(event)
change_state()
self.j.queue_outbound(self.send, outbound_message)

def wormhole_received(self, data):
# wormhole events are already performed in the journal context
change_state()
self.j.queue_outbound(self.send, stuff)

def send(self, outbound_message):
actually_send_message(outbound_message)

def save_checkpoint(self):
app_state = {"state": self.state, "wormhole": self.w.serialize()}
with open("state.json", "w") as f:

json.dump(app_state, f)
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CHAPTER 11

Indices and tables

• genindex

• modindex

• search
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